Lịch sử Hình_học

Bài chi tiết: Lịch sử hình học
Một người châu Âu và một người Ả Rập luyện tập hình học trong thế kỷ 15.

Khởi đầu sớm nhất được ghi nhận của bộ môn hình học có thể được truy nguồn từ các nền văn minh cổ đại Lưỡng HàAi Cập vào thiên niên kỷ thứ 2 TCN.[5][6] Hình học sơ khai là một tập hợp các nguyên tắc thực nghiệm được phát minh liên quan đến độ dài, góc, diện tích, và khối lượng. Chúng được phát triển để đáp ứng một số nhu cầu thực tế trong khảo sát, xây dựng, thiên văn học và hàng loạt ngành nghề khác. Các sách vở sớm nhất được biết đến về hình học là giấy cói Rhind (2000–1800 TCN) ở Ai Cập và giấy cói Moscow (khoảng 1890 TCN), các sách đất sét Babylon như "Plimpton 322" (1900 TCN). Ví dụ, giấy cói Moscow đưa ra một công thức tính thể tích của một hình chóp cụt.[7] Các tấm đất sét sau đó (350–50 TCN) cho thấy các nhà thiên văn Babylon đã sử dụng hình thang để tính toán vị trí và li độ của sao Mộc trong không gian thời gian-vận tốc. Các phép tính hình học này đã đi trước các tính toán của Máy tính Oxford, bao gồm định lý tốc độ trung bình, những 14 thế kỷ.[8] Người Nubia cổ đại ở Nam Ai Cập đãthành lập một hệ thống hình học bao gồm cả phiên bản sơ khai của đồng hồ mặt trời.[9][10]

Trong thế kỷ thứ 7 TCN, nhà toán học Hy Lạp Thales của Miletus sử dụng hình học để giải quyết các vấn đề như tính toán chiều cao của kim tự tháp và khoảng cách của tàu đến bờ biển. Ông được cho là người đầu tiên sử dụng lập luận áp dụng vào hình học, bằng cách rút ra bốn hệ quả từ định lý Thales.[11] Pytago thành lập Trường Pytago, được ghi công đã chứng minh định lý Pytago lần đầu tiên[12] mặc dù định lý này có một lịch sử lâu dài.[13][14] Eudoxus (408–khoảng 355 TCN) phát triển các phương pháp vét cạn dùng để tính toán diện tích và khối lượng của vật cong,[15] cũng như một lý thuyết về tỷ lệ nhằm tránh các số vô tỷ khi đo đạc, điều này đã cho phép hình học có những bước tiến bộ đáng kể. Khoảng năm 300 TCN, hình học được Euclid cách mạng hóa với tác phẩm Cơ sở của ông. Tác phẩm này được đánh giá là sách giáo khoa thành công và có ảnh hưởng nhất của mọi thời đại.[16] Cuốn sách giới thiệu sự chặt chẽ của toán học thông qua các phương pháp tiên đề và là ví dụ sớm nhất của lối viết vẫn được sử dụng trong toán học ngày nay, đó là định nghĩa, tiên đề, định lý, và chứng minh. Mặc dù hầu hết các nội dung của Cơ sở đều đã được biết đến từ trước, Euclid đã sắp xếp chúng vào một khung tư duy logic và mạch lạc.[17] Cuốn Cơ sở được phổ cập tất cả những người có học vấn ở phương Tây cho đến giữa thế kỷ 20 và nội dung của nó vẫn được giảng dạy trong các lớp học hình học ngày nay.[18] Archimedes (khoảng 287–212 TCN) của Syracuse đã sử dụng phương pháp vét cạn để tính toán diện tích dưới vòng cung của một parabol bằng tổng một chuỗi vô tận, và cho ra kết quả xấp xỉ khá chính xác của số pi.[19] Ông cũng nghiên cứu các xoắn ốc mang tên ông và thu được công thức thể tích của các mặt quay quanh một trục.

Phụ nữ dạy hình học. Minh họa thời một bản dịch trung cổ đầu tiên của cuốn Cơ sở, (khoảng 1310)

Các nhà toán học Ấn Độ cũng có nhiều đóng góp quan trọng trong hình học. Cuốn sách Satapatha Brahmana (thế kỷ 3 TCN) chứa các quy tắc cho công trình xây dựng hình học tương tự như cuốn Sulba Sutras.[20] Theo (Hayashi 2005, p. 363), cuốn Śulba Sūtras chứa "diễn đạt bằng lời nói tồn tại sớm nhất của định lý Pytago trên thế giới, mặc dù nó đã được những người Babylon cổ đại biết đến từ trước. Chúng chứa danh sách các bộ ba số Pythagore,[21] vốn là trường hợp đặc biệt của phương trình Diophantos.[22] Trong bản thảo Bakhshali, có một vài bài toán hình học (bao gồm cả các bài toán về khối lượng của các chất rắn bất thường). Bản thảo Bakhshali cũng "sử dụng một hệ thống số thập phân với một dấu chấm cho số không."[23] Tác phẩm Aryabhatiya của Aryabhata (499) bao gồm các công thức tính toán diện tích và khối lượng.Brahmagupta đã viết tác phẩm thiên văn học Brāhma Sphuṭa Siddhānta năm 628. Chương 12 của cuốn này, có 66 câu tiếng Phạn, được chia thành hai phần: "Các phép toán cơ bản" (bao gồm khai căn bậc ba, phân số, tỷ lệ và tỷ lệ thuận) và "toán học thực tế" (bao gồm hỗn hợp, chuỗi toán học, hình học phẳng, xếp gạch, cưa gỗ, và xếp chồng gạo).[24] Trong phần sau, ông nêu định lý nổi tiếng của mình về các đường chéo của một tứ giác nội tiếp. Chương 12 cũng bao gồm một công thức tính diện tích của một tứ giác nội tiếp (một trường hợp tổng quát của công thức Heron), cũng như mô tả đầy đủ các hình tam giác hữu tỷ (hình tam giác với cạnh và diện tích là các số hữu tỷ).[24]

Trong thời kỳ Trung Cổ, các nhà toán học Hồi giáo đã đóng góp vào sự phát triển của hình học, đặc biệt là hình học đại số.[25][26] Al-Mahani (sinh 853) hình thành các ý tưởng của việc giải các bài toán hình học như biến việc nhân đôi hình lập phương thành giải phương trình đại số.[27] Thābit ibn Qurra (được biết đến với tên Thebit trong tiếng Latinh) (836–901) xử lý các phép tính áp dụng cho tỷ lệ của thông số hình học, và đóng góp cho sự phát triển của hình học giải tích.[28] Omar Khayyám (1048–1131) tìm ra các giải pháp hình học để giải phương trình bậc ba.[29] Định lý của Ibn al-Haytham (Alhazen), Omar Khayyam và Nasir al-Din al-Tusi về tứ giác,bao gồm các tứ giác Lambert và tứ giác Saccheri, là kết quả ban đầu trong hình học hyperbol, và cùng với những tiên đề thay thế của họ, chẳng hạn như tiên đề Playfair, các công trình trên đã có một ảnh hưởng đáng kể đến sự phát triển của hình học phi Euclid, và là tiền đề cho các công trình của các nhà toán học Witelo (c. 1230-c. 1314), Gersonides (1288-1344), Alfonso, John Wallis, và Giovanni Girolamo Saccheri.[30]